Is it Memory or Logic? Blurring the Gap

Prof. Vijaykrishnan Narayanan The Pennsylvania State University

In Collaboration with

Professors Suman Datta, Sayeef Salahuddin, Sumeet Gupta, Sharon Hu, Michael Niemier, (Marvin) Mei-Fan Chang

Supported in part by NSF expeditions-in-computing, DARPA/SRC LEAST Center, NSF ASSIST ERC

September 2017

Why can't you get smarter as well

Offloading computations to memory helps in reducing data movement from farther memory to the processor

Overview

- Monolithic 3D Integration
- •Configurable Memory-Logic Device
- Cross point arrays

3D Integration: Technology and Evolution

Compute-Oriented Caches

Concurrent row and column accessible 3D memory

2.15x access time savings

This memory design can cater to applications requiring multi-dimensional data access for enhancing system performance.

Transforms traditional compiler optimizations

LUT based in-memory computing.

Boolean and arithmetic computations in memory along with store back feature

Code Compilation for in-memory compute

39% of the executions were done in memory

Where to do the compute – memory or logic ?

Rapid reconfigurable monolithic 3D FPGA (what FPGA)

Overview

- Monolithic 3D Integration
- Configurable Memory-Logic Device
- Cross point arrays

New Pathway: Integration of NVM and Processor

Power Source Driven -- Frequent backup and restores (B&R)

- e.g. Energy-harvesting computing systems \rightarrow intermittent power supply
- e.g. Low stand-by power systems \rightarrow complete fine-grain power-gating
- Key: reducing energy overhead!

Event Driven -- Quick response in normally-off Applications

- Key: low-latency restore

NCFET Modeling and Evaluation From Physics to Devices

Physics-based: Employing time dependent LK equations solved self-consistently with MOSFET equations **Circuit compatible:** SPICE based model enables seamless integration of the model with circuit simulators Enables efficient device-circuit co-design and analysis from materials through circuits.

Focus: Memory-Logic Integration

Theory T_{FE}=8nm 10⁻⁴ Current(A) 10⁻⁶ 10⁻⁸ **10⁻¹⁰** -0.5 0.5 0 V_{GS}(V) **Experiments** 10⁻² 10^{-4} 10⁻⁶ |V_0|=50mV, **e** 10⁻⁸ 0.5V. 0.9V 10⁻¹⁰ 10⁻¹² -2 V_G (V)

New Opportunities: 1. Memory-Logic Integration 2. NVM: scalable, low energy

Experimental Results from Prof. Salahuddin

Xueqing Li et al, IEEE TED, vol. 64, no. 8, Aug. 2017; Patent filed;

CENTER FOR LOW ENERGY SYSTEMS TECHNOLOGY

Compact Model

Key Features

- Physics-based: Employing time dependent LK equations solved self-consistently with MOSFET equations
- Circuit compatible: SPICE based model enables seamless integration of the model with testbenches. Compatible with existing commercial circuit simulation tools
- Enables efficient device-circuit co-design and analysis from materials through circuits.

Compact Model: Initialization

Example simulation $(V_{GS} \text{ sweep } @ V_{DS} = 0.7V)$

- Initialization is required to correctly capture the effect of gate and drain voltages on FE polarization.
- Device simulations are started with all voltages (V_{GS}, V_{DS}) at 0. The voltages are then ramped to desired values to capture the polarization trajectory.
- Circuit simulation are started by ramping supply rail from 0 to V_{DD} and then applying the inputs voltages.

Model Calibration

$$E - \rho \frac{dP}{dt} = \alpha P + \beta P^3 + \gamma P^5$$

 $\alpha = -1.05 \times 10^9 \text{ m/F}$ $\beta = 1 \times 10^7 \text{ m}^5/\text{F/C}^2$ $\gamma = 6 \times 10^{11} \text{ m}^9/\text{F/C}^4$

Static coefficients extracted from calibration against experiments

Behavior of the model with respect to varying input frequencies consistent with other works (Kobayashi et al, VLSI Tech 2015)

Aziz et al, EDL 2016

Compact Model: Capturing Different Modes of Operation

By varying the parameters (LK parameters, FE thickness (T_{FE}), oxide metrics of the underlying transistor), steep switching, non-volatile and anti-ferroelectric behavior can be obtained

FeFET Logic Design Benchmarking

FeFET Id-Vgs comparison with MOSFET

For an inverter in seven-stage RO $C_W = 0, T_{FE} = 5 \text{ nm}$

STARnet

CENTER FOR LOW ENERGY SYSTEMS TECHNOLOGY

S. Gupta et al, TED August 17 21

nvDFF: Concept and Significance

- Low backup and restore (B&R) energy and latency;
- On-demand or automatic B&R
- Other concerns: area, control complexity, retention time, circuit interface, process compatibility, etc.

Restore Operation

nvDFF1: Edge Computing with FeFET – Benchmarking

Normal operation overhead

Performance benchmarking

	[10]	[9]	[11]	This Work		
	Measured	Simulated	Simulated ^{&}	Simulated*		
Tech. size	130nm	70nm	180nm	10nm		
Voltage	1.5V	1.0V	1.8V	0.3V-0.8V		
Material	P7T Can	MTI	ReRAM	6nm HfO ₂ , PZT		
Waterial		11115	Keikhivi	ρ=0.04	ρ=0.10	ρ=0.25
$T_{Backup+Restore}$	2.67µS	>10uS	1.3µS	277pS	583pS	1.29nS
E _{Backup+Restore}	2.40pJ	382fJ	735fJ	1.38fJ		
Break-Even Time	/	0.83µS@25℃	1.47mS	55.9nS		

*: The results are for the topology of NVFF-I in [11] operating at 0.8 V supply (rise to 2.4V for ReRAM write) for the shortest break-even time.

*: Backup and restore performance in this table is simulated at 0.5V supply.

✓ Ultra-Low E_{B&R} ✓ Ultra-Low latency

✓ Low normal-operation overhead

CENTER FOR LOW ENERGY SYSTEMS TECHNOLOGY

Xueqing Li et al, IEEE TED, Aug. 2017; Patent filed; 24

nvDFF2: Intrinsically Nonvolatile DFF

- **1.** Backup/restore features
 - ✓ Fast: done in sub-nS (1000x);
 - ✓ Low-energy: < 2.4fJ@0.8V (1000x);</p>
 - ✓ Autonomous
 - no ext. control needed Compared with
- 2. Normal operation features FeCAP solution
 - ✓ Fast: GHz operation;
 - EDP overhead: ~35% (x4 fan-out)
- 3. Dense (only 2 added transistors), low-voltage, scalable, CMOS compatible

VDD

Xueqing Li et al, IEEE Trans. CAS-I, vol.PP, no.99, pp.1-13; Patent filed;

nvSRAM: Enabling Nonvolatile Computing with FeFET NVM

nvSRAM: Enabling Nonvolatile Computing with FeFET NVM

NO-DC-Current operation $\rightarrow \sim 600x E_{B\&R}$ and Break-even time savings! Enabling finer-grain power-gating with significantly lowered BET!

Break-even time (BET) is the maximum standby time of a volatile SRAM if an equal amount $E_{B\&R}$ is provided to sustain leakage.

Xueqing Li et al, IEEE TED, July 2017; Patent filed

LOW ENERGY SYSTEMS TECHNOLOGY

Symmetric FeFET NVM: Flexible Data Analytics

Recent Progress: Experimental FeFET NVM Circuit

- 10 nm HZO/0.8 nm SiO₂/p-Si gate stack
- 40 μ m / 2 μ m with 2 μ m gate overlap with S/D

29

STARnet

Ongoing collaboration work with Prof. Datta

Overview

- Monolithic 3D Integration
- •Configurable Memory-Logic Device
- •Cross point arrays

Cross-Point Peripheral Reconfigurability: Circuit-Architecture co-design

Each X-point array Reconfigurable as:

Multiple Arrays To Form Programmable Unified System

Study of selector for X-point: cross-point memories require selectors to eliminate current sneak path

Summary

- New generation of design automation tools that drive the innovation in devices
- New computational models will create additional search dimensions for exploration tools
- Models to support circuit-architecture explorations
- Software design stack and protocols co-designed with device fabrics compound benefits
- Leaves room for several interesting questions quest in many other countries in large funded projects
- Endurance, feature/voltage scaling, additional features: integrated sensing-compute structures, relative progress of other competing memory technologies.